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Specification of a Generic Format
Converter

1 Introduction

Image format transcoding has become necessary in order to get rid of all the in-
compatibilities due to the ever increasing number of image processing applications
and their associated image formats. The purpose of the RACE 2055/ TRANSIT
project, recently came to conclusion, was to develop both low-cost and high-cost
format conversion algorithms able to work with different scan modes (interlaced
and progressive), aspect ratios (16:9 and 4:3) and field/frame rates (50Hz and
60Hz) [1, 2]. Among others, the work of TRANSIT was meant to bridge the gap
between the television (interlaced) and the computer world (multimedia pro-
gressive applications). It also wanted to demonstrate how transcoding functions
could work in real time between different television formats (CCIR 601, EDP,
HDI and HDP).

On the other hand, the Scanning Format Extension of HAMLET has to study the
influence of scanning formats on the coding efficiency, performed in an MPEG2
framework. The HAMLET Extension intends to investigate the advantages of
using a progressive format as an intermediate format for the coding of interlaced
images [3, 4].

Progressive scanning is the most direct approach to represent two-dimensional
images. However, in the early years of television, an interlaced format was chosen
in order to efficiently save bandwidth. Even if this latter format introduces some
well known artefacts such as interline twitter, line crawling and field aliasing,
these effects were not so annoying at the time of early television, mainly due to
the limited spatial definition and the limited brightness range of the cameras and
displays at that time. Today, with the progress in technology, these artefacts be-
come more obvious. In such a context, the advent of the future digital television
may be seen as a good opportunity to bring a change in the scanning format [5].

When working with digital video, digital image compression has to be performed
in order to transmit the data with a reasonable bit rate. Since compression is
performed, the picture quality is no longer directly linked to the resolution of the
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picture but depends on how compression is achieved. However the picture reso-
lution gives an upper limit to the obtainable picture quality. Considering a com-
pression algorithm like MPEG2, the picture quality may vary according to the
bit rate at the coder output, the quality of the motion estimation/compensation
and the scanning format used to encode the sequence.

Concerning this last point, it has been found that coding progressive sequences
improves the subjective quality of the decoded sequence [6] [8], even if the lat-
ter is displayed in an interlaced format. Although a progressive format contains
twice as many pixels as interlaced, the amount of information is not twice as
large but may be seen twice as redundant. A good coding method eliminates
this redundancy. So, even if an interlaced scheme is chosen for the future digital
television, an intermediate progressive format — generated inside the codec — may
be useful in order to provide a better quality of the displayed sequence (interlaced
or progressive) thanks to an improved motion estimation/compensation step and
decorrelation procedure. A progressive format would also simplify further signal
processing [5].

Although the HAMLET definition of a generic format converter and the TRAN-
SIT work are related, specificities of the coding application in HAMLET must be
taken into account to lead to some further developments. Unlike TRANSIT, the
HAMLET Generic Format Converter is basically meant to be placed in front of
the coder, converting interlaced sources into progressive in order to get the best
coding efficiency. To achieve this result, a particular attention must be paid to
the quality of the construction of the progressive sequence from the interlaced
input. At first, the perceptual quality of the reconstruction must be considered.
It already has been done within TRANSIT. Different deinterlacing solutions were
compared and discussed from that point of view. But more important for our
application is the fact that the progressive sequence has to represent the "analog”
scene hidden behind the interlaced input as well as possible in order to improve
the coding efficiency. In other words, the fields added to the interlaced sequence
in order to convert it into a progressive format must be spatially and temporally
coherent with the already existing fields. This can only be achieved by the use of
motion estimation and compensation. In particular, the calculation of the motion
vectors must be finely tuned in order to recover the initial temporal and vertical
correlation existing inside the progressive sequence as if it was directly shot from
the "analog” scene by the appropriate camera. The analysis insidle HAMLET
will be based on the general sampling theory which was proposed recently [7, 8]
to handle interlaced images and proved to be successful.

After presenting the coding scheme on which the generic format converter has to
be integrated (section 2), this deliverable will introduce the generalized sampling
theorem (section 3) and its use for the motion estimation that is required to per-
form reliable format conversions (section 4). The next section will be devoted to
format conversions involving interlaced and progressive scanning formats (section



5) and will also make use of the generalized sampling theorem. Finally, we will
analyze other conversions like those between different spatial (SDTV/HDTV -
section 6) and temporal (25Hz/50Hz frame frequency - section 7) formats.

2 Coding Scheme

As within HAMLET’s framework, the generic format converter (GFC) will work
in close relationship with a coder, a study case as represented in figure 1 may be
proposed for this work.

INPUTS OUTPUTS
Codec

25Hz-Progressive 25Hz-Progressive
¢ J 25Hz-P L [/J‘F/C

50Hz-Progressive r T/ 50Hz-Progressive

r ¢ J S0Hz-P L 6 _\L

25Hz-Interlaced 25Hz-Interlaced
25Hz-1

Coder Side Decoder Side

Figure 1: Study case for the generic format converter

Although a generic format converter is, at first sight, meant to work in a more
general context — as represented in figure 2 — the representation of the former
figure (figure 1) has the advantage to distinguish the coder and decoder sides.
Indeed, as the decoder is intended to be replicated in each receiver set, econom-
ical considerations will force the market to offer, at this side, low-cost format
conversions only. On the opposite, the coder side is able to deal with high-cost
algorithms in order to get the best coding efficiency. Such distinction between
the coder and the decoder sides will be used further in this work.

3 Generalized Sampling Theorem

In this section, the reader will be reminded of results concerning the generalized
sampling theorem applied to the vertical direction of pictures [7].
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Figure 2: General study case

From the Nyquist theorem [9], it is well-known that any sequence whose spectrum
is limited to 1/7T" can theoretically be recovered exactly as long as it is sampled at
a rate greater than 2/7'. Actually, this condition is sufficient but not necessary.
In 1956, Yen [10] published a generalized form of the Nyquist theorem and the
associated interpolation formulas. He showed that any signal whose spectrum
was limited to 1/7" could theoretically be recovered exactly from N sequences at
the same rate 2/NT but yet with different phases.

Analog signal recovered
from the 2 down-sampled

la('[) / sequences

Ty T T t
Figure 3: Non-uniform sampling

Let us focus on the case of two sequences. We denote by [,(¢) the analog signal
which is sampled. It is assumed to have a bandwidth limited to 1/7". A sequence
of samples y; taken at locations nT 4 T} (see figure 3) is defined by :

y()= S LT+ T)5(t —nT —Ty) (1)

and has a spectrum related to that of the analog signal by :

1 & -
Yi(w) = 7 Z exp_anTl/T Lo(w—2mn/T) (2)

n=—0oo



A typical situation of spectrum repetition is shown in figure 4. It appears that
when the spectrum is bandlimited to 1/7" and the sampling rate is 1/7T, only
two repeated versions of the initial spectrum interfere at the same time for any
value of the frequency. It thus means that such a sequence of samples provides,
for instance from 0 to 1/7', a linear combination of the initial spectrum with two
complex weights which are known when the sampling phase is known.

n=-1 n= _ n=1 - n=2
p - N S ~ Ve
\ N
/ \ // \ / v |
/ \ \ / Vi \
7 \ 4 N
7’ Vi N 7’ \i N
7 v <\~ N
-1/T 1/T 2/T f

Figure 4: Repetition of the spectra around n/T

A second sequence y; with another sampling phase T3 would provide another
linear combination :

ya(t) = i la(nT + T5)6(t — nT —Ty) (3)
Y3 (w) = % _zoj: exp 2mint2/T Lo(w—2mn/T) (4)

Considering frequences between 0 and 1/T, we can rewrite equations 2 and 4 as

follows :
Virw) = 5 [0 0) + 77 1w - )] )
Vi) = 5 [1 ) + e 1w - 2] (©

were L, (w) and L} (w) represent respectively the negative and positive parts
of the baseband spectrum (n=0 — see figure 4). This makes a linear system with
L; and L} as unknowns and means that by solving these two equations, the
spectrum of the analog input signal can be recovered from 0 to 1/7. The same
result holds from —1/T to 0. Consequently, we are able to completely recover

the input signal.



Let us denote by w*(¢) and w™(¢) the impulse responses of ideal bandpass filters,
passing only frequencies between 0 and 1/7, and between —1/7" and 0 respec-
tively. We denote by Yt (w) and Y, (w) the versions of y; filtered by means of w™
and w~. The result provided by the solution of the systems is as follows. The
spectra for positive and negative frequencies are respectively computed as :

Li{w>0) = a¥*(w) - fY () (7)
Li(w<0) = 7Y (w) = 8Y; () (8)

where

1. the constants are given by :

ot T exp_QWﬂE/T _ T eXij(Tl—T2)/T (9)
7 exp 2™ /T — exp=2mi T /T 25 sin [x(Ty — Ty)/T]
Gob = T exp=2mT/T _ T exp~™(11=T2)/T (10)
exp—2miT2 —exp—2mTh 27sin |7 1— 42
p=2 /T —exp=2 /T g sin [w(Ty — T2)/T)

where * denotes complex conjugation.

2. The impulse responses denoted by w*(¢) and w™(¢) are given by :

exp’™/T sin (wt/T) _ exp’ /T

wt (1) T (xi/T) = T sine [7t /T
Ly e sin(nt/T) _ expT
w () = T T T sinc [t/ T] (11)

As a consequence, [,(t) is recovered by taking the inverse Fourier transform of

1 /T 3 .
L(t) = 5o [ (v ) Y )] e do

1 /T .
— g [ Y@ Y (@) exp d (12)

This means that [, is recovered by adding the versions of y; and y, filtered by
means of [aw™(t) + yw™ (¢)] and [—fw™t(¢) — Sw™(t)] respectively. We then find
that the original signal can be recovered from the two sequences of samples by
means of :



I

x sinc[r(t — kT —Ty)/T]

= sin[7(t — kT —T41)/T]
2 e ) e

X sinc[m(t — kT —Ty)/T] (13)

This formalism is relevant for the vertical description of interlaced images. As a
matter of fact, if the vertical sampling distance is denoted A within a frame, the
theoretical range of the vertical resolution is upper limited by 1/2h. In each field,
there is a 2-fold vertical downsampling compared to the vertical frame sampling
rate. As a consequence, each field contains aliasing. Nevertheless, considering
the assumptions made previously about the motion, two successive fields pro-
vide two vertical sets of points which, in general, correspond to different vertical
sampling phases. Therefore, by adequately combining the vertical information of
two successive fields, the analog information and the associated vertical resolu-
tion "hidden behind these two fields” can theoretically be recovered exactly. In
particular, the complete vertical resolution can be recovered.

4 Motion Estimation Using the General Sam-
pling Theorem

This section is devoted to the way the results presented in the previous section
apply to the problem of motion estimation in interlaced sequences.

In the present work, the motion of any field will be estimated between this field
and the two previous ones. We make the assumption that the motion from
field 1 to field 3 is uniform. Actually, it is only required that the images can
be partitioned into areas with a translational motion. We nevertheless make the
calculations for the whole picture, but for the vertical direction only. The ana-
log luminance signal at the time of field 1 is denoted [,(y) and the luminance
sequences corresponding to fields 1 to 3 are denoted by [; to [5. Let us denote
by yo the vertical motion between two successive fields. With such a motion, the
analog luminance signals corresponding to fields 2 and 3 are given by ,(y — yo)

and 1,(y — 2yo).

The problem of estimating the motion has to be analyzed for two situations de-
pending on the parity of the field for which the motion has to be estimated. We
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first handle the problem of estimating the motion of field 3 and next that of field 4.

4.1 Estimation for an odd field

! +
S ] R,
X existing pixels in field 1
A \/ existing pixels in field 2
%» [] existing pixels in field 3
oo [] + projection of field 1 onto field 3
/\  projection of field 2 onto field 3
A
V -
h S [
Yo A
fields
1 2

Figure 5: Motion estimation of field 3

The problem is illustrated by figure 5. We assume that fields 1 and 3 provide
samples of their associated luminance signals in vertical positions 2k;h — h and
2ksh — h respectively, and that field 2 provides samples located in 2kyh, where
the k; are all integers. The parameter h is defined as half the distance between
two lines within a field, or the distance between two lines within a frame. If yq is
assumed to be the correct motion vector, it means that we are able to compute a
prediction of the lines of field 3 from the information contained in fields 1 and 2.
If the assumption of a uniform motion holds, the lines 2k — h of field 1 provide
samples located in 2k1h — h + 2yg in field 3. Similarly, the lines 2k;h of field 2
provide samples located in 2ksh + yo in field 3. If we assume that the analog
luminance is vertically bandlimited to 1/2h, we know 2 sequences of samples for
field 3 and we are able to recover the exact analog signal associated with this
field. This is done by applying formula 13 with 7' = 2h, T} = 2yo—h and T, = yp.
This analog signal taken at locations 2ksh — h provides an estimate of the exact
lines of field 3 from the information contained in fields 1 and 2.

Let us define the integer (¢) and fractional (r) parts of the motion vector by :

Yo = 2h(q + ) (14)



where 0 < r < 1. In addition, we define new indices :

kis = ks—q+ (16)

Therefore, the estimates are computed by :

(o)

Zg(zkgh — h) = Z ’wlg(j)ll(QkLgh — h) -+ ’wgg(j)lg(kagh) (17)

i=—o0

The weights are defined by the following equations :

wis(j) = (=1)'sinc[m(j +2r)] (18)
waz(j) = (=1)T' 2 sin(wr)sinc[n(j +r + 0.5)] (19)

The motion estimation procedure will provide the value of yg which minimizes
a distance between the known luminance samples of field 3 and their associated
estimates computed from fields 1 and 2 by means of formula 17. Any classical
method can be used. For instance, block matching with exhaustive search or
gradient-based approaches can be considered. It should nevertheless be men-
tioned that different interpolation formulas have to be used for each new vector
estimate. However, the computation load can be reduced by limiting the possi-
ble values for yo and quantizing the motion vector. It is worth mentioning that
the weights depend on the fractional part r of the motion vector only, and the
samples which have to be used depend on the integer part ¢ only.

Remarks should be made about 2 particular situations :

1. When r = 0, the motion is exactly a multiple of 2k and no interpolation is
required. Lines of field 3 (resp. 4) are predicted by the lines of field 1 (resp.
2).

2. When r = 0.5, the motion is exactly the distance between 2 lines in a frame.
It corresponds to the singular situation where the sampling phases of the 2
sequences are the same. Therefore, from the point of view of interpolation,
it is not possible to recover the analog signal exactly. As regards the motion
estimation problem the situation is however very easy, because the lines of
fields 3 and 4 are also lines of fields 1 and 2. Again, no interpolation is
required for the motion estimation. However, we feel it better to build an
estimate from the average value obtained from fields 1 and 2 rather than
use the information of one of the two fields only.
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4.2 Estimation for an even field

We assume that fields 2 and 4 provide samples of their associated luminance
signals in vertical positions 2kyh and 2k4h respectively, and that field 3 provides
samples located in 2ksh — h. If yg is assumed to be the correct motion vector, it
means that we are able to compute a prediction of the lines of fields 4 from the
information contained in fields 2 and 3. If the assumption of a uniform motion
holds, the lines 2kyh of field 2 provide samples located in 2kyh + 2yg in field 4.
Similarly, the lines 2k3h — h of field 3 provide samples located in 2ksh — h + yo
in field 4. If we assume that the analog luminance is vertically bandlimited to
1/2h, we know two sequences of samples for field 4 and we are able to recover the
exact analog signal associated with this field. For field 4, we recover the analog
luminance signal by applying the formulas of section 3 with 7' = 2h, T} = 2y,
and Ty = yo — h. This analog signal taken at locations 2k4h provides an estimate
of the exact lines of field 4. Considering the integer and fractional parts of the
motion vector, we define new indices :

kya = ks—2q+7 (20)
k‘374 = k4—q—|—] (21)

Therefore, the estimates are computed by :

Z4(2k‘4h) = Z 'w24(j)l2(2k274h) + 'w374(j)l3(2k374h — h) (22)

j=—o0

The weights are defined by the following equations :

wa(j) = (=1)sinc[r(j +2r)] (23)
wsa(j) = (=1) 2 sin(7wr)sinc[m(j +r — 0.5)] (24)

The motion estimation procedure will provide the value of yg which minimizes
a distance between the known luminance samples of field 4 and their associated
estimates computed from fields 2 and 3 by means of formula 22.

5 Conversions between Interlaced and Progres-
sive Scanning Formats

This section deals with conversions between progressive and interlaced formats.
As it refers to the coder side (see figure 1), an interlaced to progressive conver-
sion may use some high-cost techniques. This is fortunate since low-cost linear

11



deinterlacing (e.g. spatial and temporal linear interpolation) does not offer a
sufficient picture quality at the input of the coder in order to improve the coding
efficiency. Concerning the decoder side, the opposite conversion - progressive to
interlaced - has to be performed. As it basically reverts to throw lines away,
this conversion can easily be achieved and meets the "low computational cost”
requirement needed on this side.

5.1 25Hz-Interlaced to 50Hz-Progressive Conversion

Motion compensated deinterlacing (MCD) is really similar to motion estimation
(see section 4). Instead of estimating existing lines, one has to compute missing
points (see figure 6). In field 3, the lines located in 2ksh, and, in field 4, the lines
located in 2k4h — h have to be estimated.

y
X existing pixels in odd fields
\/ existing pixels in even fields
/\  projection of field 2 onto field 3
(@  pixels to be computed
~—_/~__ analog signal hidden behind field 3
h >
Yo -
G) A4
: fields
1 2 3 4

Figure 6: Deinterlacing the third field

Nevertheless, some comments can be made. The motion estimation step always
requires that the current field be compared with a prediction made from two
different ones. Concerning MCD, there are several possibilities. A first one is to
follow the motion estimation step, namely to compute the missing lines of the
current field from the two previous fields, as suggested in section 4. Another
possibility is to build the estimation of the missing lines from the previous field
and the current one as represented in figure 6 : the generalized sampling theorem
can be applied to the existing pixels of field 3 and the projections of field 2 in
order to reconstruct the analog signal hidden behind field 3 and then resample
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this signal at the points of the missing pixels. From a practical point of view,
this second solution is more attractive. As a matter of fact, the storage of 3

fields would be required in forward/backward MCD. In the first solution, 5 fields
would have to be stored. Besides, it has been shown in [8] the that the second
solution is also more efficient. Therefore, the 3-field solution is preferred and only
the filters corresponding to this solution will be derived. Again two situations
associated with the parity of the current field have to be considered.

5.1.1 Filter derivation

We assume that the correct motion vector yo has been found and that fields 3
and 4 have to be deinterlaced. The generalized interpolation formulas have to
be adapted. The samples of field 2 located in 2k3h provide samples of /3 located
in 2kyh + yo. The lines of field 3 provide samples of I3 located in 2k3h — h. This
is illustrated by figure 6. Therefore, the generalized interpolation can be applied
with Ty = yo and 75 = —h. Defining ky 3 = ks — ¢+ 7, k33 = ks + 7, the estimates
are computed by :

23(2k‘3h) = E ’Ugg(j)l2(2k273h) + ’U33(j)l3(2k‘373h — h) (25)

j=—o0

The weights are defined by the following equations :

vmls) = (=1 sinclr(j + 1))/ cos(mr) (26)
vs3(j) = (=1)’sinc[n(5 — 0.5)] sin(7r)/ cos(nr) (27)

Similarly, field 4 can be deinterlaced. Defining

k‘374 = k‘4 —q —|—] (28)
ksa = kot (29)

the estimates are computed from fields 3 and 4 by :

i4(2]€4h — h) = Z ’U34(j)l3(2[€374h — h) + ’U44(j)l4(2k474h) (30)

i=—o0

The weights are defined by the following equations :

vaa(j) = (—1)]: sinc[m(j + )] / cos(nr) (31)
vas(7) = (=1)*T'sinc[r(j5 + 0.5)]sin(7r)/ cos(mr) (32)

As mentioned previously, when r = 0.5, it is not possible to recover the analog
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signal exactly. This situation corresponds to a motion which is an odd multiple
of the distance between two lines within a frame, namely h. Consequently, this
is equivalent to having two sequences produced with the same sampling phase.
In this situation, a fallback mode has to be defined. We decided to compute the
missing point by averaging between the two surrounding lines in the current field.

All formulas were derived for the case of forward prediction, namely, prediction of
the current information from the past. Equivalent formulas can be easily derived
for the backward prediction.

5.1.2 Nyquist-shaped interpolators

In this subsection we adapt the idea already proposed in [7]. When the values of
the weights defined above are computed, it appears that the coefficient decay is
low and that a large number of coefficients are required to obtain good accuracy.
This is due to the sinc function associated with the ideal rectangular bandpass
filter. A faster decay of the coefficients may be expected from other interpolators.
As a matter of fact, motion vectors can be very local. In order not to alter the
local aspect of the motion information, it is necessary to avoid using pixels which
are too far away from the center of the reference matching area. In other words,
long filters should be used in large areas where many blocks have the same motion.
Nevertheless, one should be careful along the borders of such areas. Conversely,
for small objects whose motion is different from that of the surrounding area,
small filters should be preferred.

In this section, alternative interpolators are studied. They are obtained from the
modulation of a lowpass prototype filter. We again derive the interpolation for-
mulas associated with the generalized sampling theorem [7]. The 2 filters w™(¢)
and w~ (1) are obtained by shifting the same lowpass prototype filter on the fre-
quency axis . We then have :

W (w) = W(w+wo) (33)
WHw) = W(w—w)

where wg = m/T. The impulse responses then fulfill the following relationships :

w(t) = exp'_j‘”otw(t) (34)
wh(t) = exp’ w(t)

Let us denote by y; and y, the 2 sequences of samples taken at the same rate 1/T
and with phases 7T} and Ty. If we denote by Y;*(w) and Y, (w) the versions of Y;
filtered by means of w* and w™ respectively, the spectrum of the reconstructed
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input signal can be written as :
X(w) = a¥["(w) + 7Y (w) = Y (w) = Y5 () (35)
We have :

wh (1) +yw (1) = TSi:E[f(l TQT;?T/]T bty (36)
Sirslg[f(? }B%T Lo (37)

/3'w+(t)—|—5'w_(t) =T

As regards the choice of the prototype filter, one has to take into consideration
what follows. The ideal interpolation filter preserves the full bandwidth up to
1/2h. However, because of the Kell factor [5], the bandwidth is actually limited
to K/2h, with K ~ 0.7. This means that the repeated spectra will not interfere
in the interval |f| < (1 — K)/2h and the bandpass filters may have a transi-
tion in this interval. In order to recover the exact spectrum repeated around
the O-frequency, it is necessary for a non-ideal filter to have a Nyquist shape
around 0. On the other hand, a Nyquist behavior of w(t) guarantees that the
zeroes of the impulse response are at the same locations as those of the ideal
impulse response, which means that the existing samples are not modified by the
interpolation. These considerations support the choice of a Nyquist filter for w(t).

If we take a prototype filter w(t) which is of the Nyquist type, the frequency
response is defined by :

1 |[fI < (1 —p)/(2T)
W(f) =9 1/2+12sin[zT(1/2T) = [f)/p] (1 - )/( ) <|fl<
0 [F1> (1 +p)/(2T)

with p being the roll-off factor. The corresponding impulse response is :

1 cos[mpt/T]

w(t) = T1— 1272 sinc [(7t)/T] (39)

We see that compared with the ideal lowpass filter there is an additional win-
dowing factor in the impulse response. On the other hand, in order to have a
transition in an interval of width 2(1 — K')/T', we should chose the roll-off factor
p=2(1-K).

We then find that the original signal can be estimated by means of :
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=

cos [mp(t — kaT — T1)/T]
L —4p?(t — kT — T1)?/T?
> sin [m(t — kT —T1)/T]
o2 e ) e
cos [mp(t — kT — T3)/T]
1 —4p?(t — kT — T3)%/T?

(40)

sinc [m(t — kT —T1)/T)|

sinc [m(t — kT — T3)/T)|

All formulas derived in subsection 5.1.1 for non-Nyquist shaped filters can be
modified consequently. This modification is performed by replacing the terms of
the form sinc(wx) by sinc(mx) cos [rpz] /(1 — 4p*a?).

5.2 25Hz-Interlaced to 25Hz-Progressive Conversion

As represented in figure 1, the 25Hz-interlaced to 25Hz-progressive conversion
may be seen as the cascade of two modules : a 25Hz-interlaced to 50Hz-progressive
converter (see the previous section) followed by a 50Hz-progressive to 25Hz-
progressive converter (see section 7).

5.3 50Hz-Progressive to 25Hz-Interlaced Conversion

50Hz-progressive to 25Hz-interlaced conversion can easily be achieved by filtering
the progressive source through a vertical low-pass filter and discarding the useless
lines in order to generate the interlaced fields. The low-pass filtering is used
to reduce the vertical definition according to the Kell factor. This factor is
meant to reduce the line flicker that appears on bright and sharp horizontal edges
when displayed in an interlaced format [5]. The impulse response of such filter
(known as "HHI filter”) is listed below and its frequency response is represented
in figure 7.

|-4[8]25]-123 230728 230 |-123[25|8[-4| /1000

Table 1 : Pre-interlacing filter

If the progressive sequence to be converted comes from a deinterlaced source, a
low-pass filtering is not mandatory since the Kell factor is already present in the
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Figure 7: Pre-interlacing HHI filter

progressive sequence. However, if this progressive sequence has been encoded
then decoded, some high-frequencies could still be present due to the coding pro-
cess. Then, a low-pass filtering would be useful again.

5.4 25Hz-Progressive to 25Hz-Interlaced Conversion

Again, as represented in figure 1, a 25Hz-progressive to 25Hz-progressive conver-
sion may be seen as the cascade of two modules : a 25Hz-progressive to 50Hz-
progressive converter (see section 7) followed by a 50Hz-progressive to 25Hz-
interlaced converter (see the previous section).

6 Conversions Between Different Spatial For-
mats

In this section, we will focus on conversions between different spatial resolutions,
as needed for conversions between High-Definition and Standard-Definition tele-
vision formats. Again, a distinction has to be made between the two different
scanning formats.

6.1 Conversions Between Progressive Formats

When working with a progressive format, spatial conversions are easily processed
by using a chain of down-/up-sampling and low-pass filtering.
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6.1.1 Down-conversion

As the scaling factor may be fractional, a digital down-conversion requires the
use of both up- and down-samplers, as illustrated in figure 8 in the particular
case of a 3/2 down-conversion.

Original spectrum /\M Down-sampled spectrum
N

" h(n) £
xG) ™ ) i y()
3
Input @ /\/ w Down-converted

Output

Figure 8: Down-sampling by a factor of 3/2

The low-pass filter is used to avoid the aliasing effect and suppresses the fre-
quencies that could fold back to the low spectrum during the down-sampling
operation.

As these operations are not time invariant — due to the up-/down-sampling op-
erators — they cannot be written in terms of a simple filtering expression but as
a filter whose impulse response periodically depends on the output samples to
be calculated.

Let us define the down-sampling factor as N/M, where M and N are integers
and N > M. Let us also denote h(n) the approximation of the ideal low-pass
filter that cuts off all frequencies below f;/2N, were f; represents the sampling
frequency. If z(n) are the input samples, the down-converted sequence y(i) is
given by :

y(i) = S RGN — jM)a()) (41)

J

Assuming a low-pass filter of the 2K + 1 th order (K integer), h(k) = 0 for
—K < k < K and the index number j has only to cover integers situated be-
tween MK ’]'\}K < g < Ntk Z]'\}'K.

Further considerations can be found in [15].

18



6.1.2 Up-conversion

Once again, as the scaling factor may be fractional, a digital up-conversion re-
quires the use of both up- and down-samplers as illustrated in figure 9.

W Original spectrum /\V\ Up-sampled spectrum
\
fs f;

S
h(n)
X ) ) ()
@ ™ @ Up-converted
Output

Input

Figure 9: Up-sampling by a factor of 3/2

Again, the expression of the up-converted sequence may be expressed with a fil-
ter whose impulse response depends on the output samples to be calculated and
equation 41 remains valid with an up-sampling factor of M/N (M > N).

6.2 Conversions Between Interlaced Formats

A first low-cost solution would be to merge the interlaced fields into progressive
frames and apply the same processing as in the previous subsection. Unfortu-
nately, this technique produces ghost-effects and motion judder in moving parts
of the picture. Another way would be to perform intra-field conversions. How-
ever, it does not take into account the aliasing present in each field.

In order to get rid of this intra-field aliasing, an improved method is based on the
general sampling theory : the interlaced image is first deinterlaced (as explained
in section 3) and its progressive version can be further up- or down-converted.
As last step, reinterlacing has to be performed. Mixing all these operations to-
gether leads to an overall digital and motion-based method for interlaced image.
Further equations were developed in [13] and [16].
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7 Temporal Conversions

Temporal down- and up-conversions revert to the same problem as for spatial
down- and up-sampling, but for the temporal dimension. Again, the same basic
outline as represented in figures 8 and 9 may be used. This problem is however
more complex since it involves many different aspects as explained hereafter.

As the video signal shots the scene at fixed moments — and thus performs a
sampling process in the time dimension — temporal aliasing could appear in the
original video sequence if no temporal low-pass pre-filtering has been performed
during the capture of the analog scene. As a temporal filtering is hard to imple-
ment (it reverts to suppress from the scene all objects that are moving too fast
compared to the frame rate), only a poor filtering is performed inside the cam-
era thanks to the remanence effect in the pickup tube. Fortunately, the human
eye seems not to be bothered by this temporal aliasing issued from the lack of
pre-filtering.

On the other side, the sampling theory also defines a low-pass post-filtering in
order to reconstruct the original signal by means of its samples. In the case of
displaying television sequences, this post-filtering only counts upon the proper-
ties of the human vision [5], its remanence in particular and the remanence of the
display. As this filtering is not perfectly suited for such application, some defects
may be still visible like the large area flickering or some judder in quick moving
parts of the scene. In order to reduce these defects, further attention must be
paid during the capture of the sequence.

In order to avoid large area flickering, the display refresh frequency must gen-
erally be larger than 50Hz, depending on the brightness range of the screen.
Concerning the judder effect that might be visible for quick motion present in
sequences taken at low frame rate (below the 50Hz), it can be suppressed with
a camera exposure time set to the elapsed time between two successive images.
With such exposure time, quick motions are turned into a continuous blur and
makes the transitions between successive images smoother for the eye.

Moreover, the judder effect occurs when the difference between two adjoining
frames is too high for the eye to reconstruct the missing movement existing
between these images. This effect depends on several parameters :

o ['rame rate. Higher the frame rate, lower the differences between successive
images.

o Camera integration time. Longer the integration time, smoother the tran-
sitions between successive images.

o Viewing distance. Closer the viewing distance, larger the visual angle and
more visible the differences between successive images.
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o Screen/picture resolution. As the viewing distance is related to the screen
resolution (higher the resolution, closer the viewing distance), it also influ-
ences the judder visibility.

o Screen brightness. Higher the brightness, longer the retinal persistence. The
eye then becomes more sensitive to the judder effect.

o Picture contents. Faster the movements of image objects, higher the differ-
ence between successive images.

Of course, these parameters are interacting: for example, we can reduce the ex-
posure time (in order to improve the sharpness of the sequence) and still limit the
judder effect by simultaneously increasing the shooting (and display) frequency.

7.1 Low-Cost Conversions (Decoder Side)

Taking into account the above general considerations, low-cost temporal con-
versions (decoder side) can be performed while offering a satisfactory sequence
quality.

7.1.1 Down-Conversion

By taking care of performing a low-pass temporal pre-filtering (e.g. bilinear
filtering), it is possible to down-convert a sequence by simply throwing images
away. However, in order to achieve good results, the following conditions are
required :

o the exposure time of the original sequence must be large enough in order
to avoid multiple contours as result of the low-pass (digital) pre-filtering.
Ideally, this exposure time should cover the elapsed time between two suc-
cessive images.

o the low-pass pre-filtering must have enough taps in order to render a motion
blur that covers the elapsed time between two successive images of the down-
converted sequence. However, a longer filter implies an larger frame memory
in order to perform the temporal filtering. It may run counter to the low-cost
requirement considered here. This can be solved by using an appropriate
exposure time at the camera.

With respect to these, the judder appearing in quick moving parts of the scene
can be avoided but to the detriment of some increased blur in these same areas.
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7.1.2 Up-conversion

If the exposure time of the input sequence is high enough, up-conversion to an
higher frame rate can simply be performed by repeating existing frames. This
solution is used for displaying films (24Hz sped up to 25Hz) on television (50Hz).

7.2 High-Cost Conversions (Coder Side)

When the shooting conditions are such as it is not possible to use some low-
cost techniques or when there is a need to offer an improved quality and avoid
additional blur in quick motion areas (broadcasting side), motion compensated
conversions have to be used.

For conversions implying progressive formats, a usual interpolation techniques
may be used. For example, the pixels of the missing frames can be obtained by
a temporal interpolation along the motion direction. The motion estimation is
first carried on a block-by-block basis and uses some iterative procedure in order
to recursively compute the different displacement estimates with an increasing
accuracy, starting from an initial guess. This initial estimate may be obtained
from the last estimates of the surrounding blocks [14]. Let D, (a 2x1 matrix)
denote the displacement vector of the n** block, the algorithm works as follows :

D= [ Z(VuVa) T(ViVy) = [ S(DFD.Vy) (12)
it o S(Va.Vy) S(Vy.Vy) "\ S(DFD.Vy)

where Vg and Vy represent respectively the horizontal and vertical intensity

gradients around the (x,y) pixel. DFD stands for displaced frame difference and

is defined as follows :

DFD =DFD(z,y) = I(x,y,t)— [(x — Dyyy — Dy, t =T (43)

where T represent the elapsed time between two frames. The summations re-
ferred in 42 extends over the pixels belonging to the considered block.

As the motion estimation is carried out on a block basis, the vector of each block
represents an averaged value of the displacement within this block. In case of
having two different moving objects within the same block (object borders), this
value may be wrong and the interpolation incorrect. In case of motion compensa-
tion, this is not awkward since the compensation error is also transmitted along
the estimated motion vectors. But this is not the case in our frame interpolation
application. Therefore, a complementary pixel based motion estimation has to
performed.
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As example, for a pixel to be interpolated, we can consider the motion vector
of each surrounding block. Then, the vector which gives the minimum absolute
difference between the displaced pixels belonging to the previous field and the
next field is selected for the interpolation. The minimum absolute difference is
computed on smaller blocs, typically 3x3 pixels.

Since the interpolated fields have to be inserted between those of the original
sequence (e.g. H50Hz to 60Hz frame rate conversion, see [17]), an assignment
problem may occur since the blocks, once translated along the attached move-
ment, do not necessary create a complete partition in the interpolated field, as
shown in figure 10.

Block B
Block A Block C

—t——t——+——+——+——+——+——+——+——+——+——+—+— Frame |

"\ ‘\ v \

. Overlapped '\ ' Uncovered / / [ |

— T Iy Interpolated

b v vy ¢y ¢y ¢+ + Frame?2
t Block A Block B Block C

Figure 10: Partition problem inside the interpolated field

This problem can be solved by extending the matching area outside the ele-
mentary segmentation blocks in order to ensure at least the full covering of the
inserted field. Uncovered areas will then disappear by giving rise to growing
overlapped areas. For these areas, a choice has to be made between several block
candidates. The best matching one can be selected by the use an absolute mini-
mum absolute difference criteria.

Furthermore, a simple interpolation along the direction of the motion does not
treat uncovered regions correctly. When the DFD of the best matching blocks
rates high, then a block that is present in one frame but covered in the previous
one has to be envisaged. In such a case, it is better to leave the interpola-
tion technique and not consider information from both frames surrounding the
frame to be interpolated anymore, but consider information from the future only.
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For the interlaced format, a deinterlacer has to be used prior to the temporal
interpolator and the up-converted sequence has then to be reinterlaced. Again,
using an algorithm that makes use of the general sampling theory improves the
deinterlacing step and the up-conversion by the same way.

8 Conclusion

This deliverable has specified a deinterlacer that makes use of the general sam-
pling theory. This theory handles the aliasing present in each field of an interlaced
sequence and allows a perfect reconstruction of the progressive frame hidden be-
hind those fields. Such deinterlacer has been used within the HAMLET/WP2
in order to study the coding efficiency of deinterlaced (progressive) sequences
compared to their interlaced sources.

Other conversions, spatial as well as temporal, were also considered here and
further references about the generalized sampling theory have been made in order
to improve these conversions when interlaced formats were involved.
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